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SUMMARY 

This paper describes a method for the numerical solution of a Riabouchinsky cavity flow. Application of a 
boundary element method leads to a system of non-linear equations. The mild singularity appearing at the 
separation point is treated with the introduction of a curved boundary element, which satisfies the exact 
behaviour of the free boundary in that neighbourhood. 
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INTRODUCTION 

This paper considers the cavitational flow of an incompressible inviscid fluid past a plate in a 
channel of finite width and infinite length. The plate is placed symmetrically in the channel at right 
angles to the flow. When the flow meets the plate, a cavity is formed immediately behind the plate, 
containing air at a constant pressure. 

Various theoretical models have been suggested for this problem and a review of these can be 
found in Wu’ or Birkhoff and Zarantello.’ The most popular model available was put forward by 
Riabo~chinsky.~ In it, the cavity is closed by introducing an image plate downstream of the plate, 
as shown in Figure 1. As the flow is also symmetric about the axis of the channel, only a quarter of 
the region needs to be considered. 

The model described above can be used for the solution of two different problems, a planar flow 
and an axisymmetric flow. Numerical solutions for the planar flow problem were obtained by 
Mogel and Street,4 using a finite difference method, and by Aitchison,’ using the method of 
variable finite elements. The axisymmetric flow problem has also received much attention (see 
Aitchison,’ Brennen6 and Fox and Sankar7). This study concentrates on the planar flow problem. 

The model can be made non-dimensional (for details, see, AitchisonJ) and this leads to the 
following problem for the streamfunction $ in the region SZ (Figure 2): 

V’$=O in 0, (1) 

a$/& = 0 on AB, CD, (2) 

$ = 0  on DE,EO, (3) 
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Figure 1. Riabouchinsky's model 
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Figure 2. Region of solution 
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Figure 2. Region of solution 

@ = l  onBC 
and * = ] on the free boundary OA, 

a*/an = qc 

(4) 

( 5 )  

where a/& denotes the derivative in the direction of the outward normal to the boundary of R and 
qc is a constant to be determined as part of the solution. 

The fact that the value of qc is not known makes the problem particularly difficult. Advantage, 
however, can be taken of the fact that qc is a constant. If the boundary condition t) = 0 is assumed to 
hold on the free boundary OA, the latter can, in principle, be iterated until a position is reached at 
which is constant on it. 

It should also be mentioned that there is a mild singularity at the separation point which is 
considered later in the numerical solution of the problem. 

APPLICATION OF THE DIRECT BOUNDARY ELEMENT METHOD 

The most interesting feature of the problem described in the 'Introduction' is the existence of a free 
boundary. Boundary element methods deal directly with the boundary of the region under 
consideration and are therefore very suitable for the numerical solution of such problems, as has 
been demonstrated by Liggett,8 Kelman~on,~  Aitchison and Karageorghis" and Karageorghis.' 

The direct boundary element method is based on Green's third identity in the form (for details, 
see, e.g., Jaswon and Symm''): 
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where 
0 if p$RudR,  

tl(p)= tl if p d R ,  i 271 if PER, 
(7) 

a is equal to n if the boundary dR has a unique tangent at  p, otherwise it is equal to the interior 
angle between the tangents to d!2 at  p, and d/dn denotes the derivative in the direction of the 
outward normal to do at q. The boundary dR is divided into N straight line segments. On each 
such segment (element), the functions $ and a$/& are approximated by piecewise linear 
functions, in terms of their nodal values ; i.e., their values at  the endpoints of the segment. 
Double nodes are used at the corners. Subsequent collocation at each node leads to the system 
of N equations 

AQ - BQ'"' = EQ, (8) 
where Q and $(") are the vectors of the values of and a$/& respectively at each node. E is 
a diagonal matrix consisting of the values of tl(p) at each node. A and B are matrices consisting 
of the weighted integrals of (d/dn)log 1p - qI and log Ip - qI respectively over each element. 
These integrals are evaluated analytically in the manner described in Ingham et a l l3  

Given $ or all//dn or a linear combination of these at each node, substitution into (8) leads to a 
system of N linear equations in N unknowns which is solved by Gaussian elimination. If the values 
of $ at interior points are required, having obtained the unknowns at the boundary nodes, a second 
step using (6) evaluates these. 

NUMERICAL PROCESS 

The obvious choice of variables to represent the free boundary in a suitable manner would be the y 
co-ordinates of the nodes on it. Iterating each of these separately, however, would be very 
uneconomical and tedious and therefore out of the question. Instead, the following procedure is 
adopted: 

Consider the direct boundary element method for the solution of the problem and let h be the 
vector of values of the y co-ordinates of the nodes on the free boundary. 

At each node on the fixed part of the boundary (not on the free boundary), let the unknowns be $ 
and a$/an. At each node on the free boundary (excluding the node at 0), the unknowns are $, 
a$/& and the y co-ordinates h. 

If there are n nodes on the fixed part of the boundary and m nodes on the free boundary, the total 
number of unknowns is therefore 

M = 2n + 3m. 

The direct boundary element method generates n + m equations (total number of nodes). The 
boundary conditions for each of the nodes on the fixed part of the boundary provide n equations. 
On the free boundary, both boundary conditions are imposed: 

(9) 

* = 0, (10) 

a$/an = constant. (1 1) 

dt,b/dnl, = a$/dn],, i = 1,2,. . . m (12) 

Condition (10) gives m equations. Condition (ll), if written in the form 

(i is a node on the free boundary), provides rn equations. 
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The total number of equations is therefore 

2n + 3m = M ;  (13) 
i.e., there is an equal number of equations and unknowns. 

Assuming that condition (10) holds on the free boundary and fixing h, the values of alC//an 
can be obtained on the free boundary. The values of alC//an obtained are therefore entirely 
dependent on the position of the free boundary-i.e., h-and the requirement that d$/an takes 
constant values there leads to the solution of the system of non-linear equations 

fi(h) = alC//anli - a+/dnl, = 0, i = 1,2,. . . , m, (14) 
where i is a node on the free boundary. 

It has thus been demonstrated that the determination of the position of the free boundary 
and the constant qc is equivalent to the solution of a system of non-linear equations. The system 
can be solved numerically using a modified Powell-hybrid method, details for which can be 
found in P0we1l.l~ 

INCLUSION OF A CURVED ELEMENT AT THE SINGULARITY 

So far, no account has been taken of the mild singularity at the separation point 0. From past work 
on the problem (see Mogel and Street4 and Aitchison5), the exact nature of the free boundary in the 
neighbourhood of the singularity is known. When using the direct boundary element method, full 
advantage can be taken of this, as a curved element can easily be introduced at 0, satisfying this 
known behaviour, while still employing straight line segments to describe the rest of the boundary. 

The shape of the free boundary near the singularity is given by 

y = ax2I3, (15) 

where a is a constant to be determined. This behaviour is taken on the curved element OF (see 
Figure 3) and, if the co-ordinates of the node at F are (xl, yl), then 

a = y1/xy3. (16) 
Taking the parameter s to describe the arc length from 0 to F, this is given in terms of x as 

[l + ( d y / d ~ ) ~ ] ” ~ d x  = (x2l3 + 9 - &a3. 27 (17) 

Figure 3. Curved element at the singularity 
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The total length of OF is 

1 = s(xl) = ($3 + q a y  - Au3.  (18) 

(19) 

The functions $ and a$/& are assumed to vary linearly on the curved element O F  as 

$ 2  (1 - ~ / l ) $ ~ -  + ( ~ / l ) $ ~ ,  a$/& 2: (1 - ~ / l ) $ ? ? ~  + ( ~ / l ) $ y ) .  
The system matrices A and B now include contributions from integration along the curved 

element. These, due to their complicated nature, can no longer be evaluated analytically and are 
therefore evaluated numerically by Gaussian quadrature. 

NUMERICAL RESULTS 

The direct boundary element method can now be applied to the problem. In order to compare 
the results with the results of Mogel and Street4 and Aitchison,’ the dimensions of the flow 
region are taken to be (Figure 2) 

DE = 1.0, EO = 0.1, CB = 1.5, C D  = 1.0. 

The elements on the free boundary are chosen so as to have equal length projections on the x axis. 
Runs with 5,10,15,20 and 25 elements on the free boundary are performed for both the case when 
straight line segments are used everywhere and the case when a curved element is introduced at the 
singularity. Solution of the resulting system of non-linear equations produced the constant value of 
a$/& on the free boundary and the heights of the nodes there. Listing the heights of each node on 
the free boundary is impractical and so only one such value is examined; namely, the height of the 
last node at A, which is denoted by b. 

Table I displays the values obtained for a$/& and b for different numbers of elements on the free 
boundary for both methods. From Table 1 it is observed that all the displayed quantities behave 
in the following way. If 

n = 5k, (20) 
where n is the number of elements on the free boundary, it can easily be seen that, iff represents any 
of the above quantities, 

Subsequent extrapolation to the limit f* leads to 
f k  + 1 - f k  = 4(h - f k  - 1 ). (21) 

f* = 2 f 5  -f4. (22) 
Using equation (22), the results obtained after extrapolation are compared with the existing ones 

in Table 11. The best free boundary obtained is displayed in Figure 4 (25 elements on free 
boundary, use of curved element). 

Table I. Summary of values obtained for a$/& and b 

Elements on free boundary 5 10 15 20 25 

?$/an (BEM) 1.4283 1.4507 1.4600 1.4648 1.4673 
a$/& (BEM with curved element) 1.4426 1.4590 1.4669 1.471 1 1.4732 
b (BEM) 0.2031 0.2118 0.2156 0.2176 0.2187 
h (BEM with curved element) 0.2098 0.2158 0.2189 0.2206 0.2214 
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Table  11. Compar ison  of results 

M e t h o d  b 

BEM 1.4698 02198 
B E M  with curved element 1.4753 02222 
Aitchison 1.429 0.2013 
Mogel  and Street 1.562 0 2 4 5  

CONCLUSION 

In this study, the direct boundary element method is applied to a free boundary problem. This leads 
to the solution of a system of non-linear differential equations which generates the position of the 
free boundary and the values of the other unknown quantities of the problem. This implementation 
is improved by the incorporation of the analytical behaviour of the free boundary near the 
separation point. The improvement does not introduce further difficulties because of the properties 
of boundary element methods to deal only with the boundary of the region under consideration. 
The numerical results compare well with existing ones obtained by other numerical methods. 
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